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Abstract 
 
When real recordings for a specific earthquake scenario are scarce, engineers often use synthetic 
records generated by seismologists as input to nonlinear dynamic analyses of both existing and 
new structures. This practice has sometimes generated concerns among practitioners regarding 
the accuracy of the nonlinear response obtained using simulated ground motions.  This article 
presents a case study where the issue of structural response accuracy is investigated for seven 
simulation techniques whose derived structural responses are statistically compared against the 
“correct” answer provided by real accelerograms. The example involves seven suites of synthetic 
records that emulate real ground motions recorded at 20 stations located within 20km from the 
Northridge fault rupture. The results show that six out of seven simulation methods appear to be 
biased, especially in the short period range, both in the linear elastic and in the nonlinear post-
elastic regimes.  The tendency of these synthetic records is to create linear responses that are 
more severe than those from the real counterparts in the short period range. This tendency is 
reversed in the nonlinear regime where responses from synthetic records in the same short period 
range tend to be less severe than those from real accelerograms. Synthetic records seem to be 
especially benign in relatively weak and stiff structures. Simulated records also tend to produce 
nonlinear responses that are less variable than those caused by real records in the short period 
range and more variable in the long period range. This discrepancy should be taken into 
consideration when using synthetic records for assessing, for example, the safety of a structure 
against collapse.  The results mentioned above were found to be stable to the sensitivity 
performed on different parameters and assumptions of the analyses.  It should be emphasized, 
however, that these conclusions were found from one case study only and their validity may not 
apply to other cases or to different simulation techniques. More research is needed to establish 
the range of applicability of these findings.  
 
1.0 Introduction 
 
Consideration of the post-elastic dynamic response of structures is of fundamental 
importance in earthquake engineering as most buildings are expected to deform beyond 
their linear elastic limit during intense ground shaking.  In recent years, the computation 
of a structure's dynamic inelastic response to an earthquake event has been done more 
frequently than ever before via time-history analysis.  Ideally, the input ground motions 
to such analyses are past recordings of earthquakes with similar characteristics (e.g. 
magnitude, distance, and fault mechanism) to the earthquake scenarios that dominate the 
seismic hazard at the structure's site.  Unfortunately, real recordings of ground motions 
with suitable characteristics are often scarce or non-existent.  This shortage of adequate 
ground motions has led to the engineering practice of modifying real accelerograms to 
meet a prescribed ground shaking intensity level or target elastic response spectrum.  
Techniques often used involve scaling the amplitude of real accelerograms or adjusting 
their frequency content to match a target spectrum.  The alternative to modifying real 
accelerograms is to use completely synthetic (also referred to as simulated) earthquake 
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time-histories, which are founded upon the basic physical principles controlling fault 
rupture and seismic wave propagation from source to site.  This study is concerned with 
this latter alternative and the effect that using simulated time-histories may have on 
seismic performance assessment. 
 
Like the practice of modifying real accelerograms by amplitude scaling or spectrum 
matching, the use of synthetic time histories has caused concern amongst some engineers.  
We interpret these concerns here as being twofold:  
 

• Simulated ground motion records may not produce, on average, the same 
nonlinear structural response as real ground motion recordings with the same 
nominal intensity.  If there were a systematic deviation (sometimes referred to 
here as bias for conciseness sake), then engineers may either not use simulated 
records or account for the bias in their seismic performance analyses when using 
synthetic rather than real recordings. 

• The record-to-record variability of nonlinear structural response produced by 
synthetic and real records with otherwise similar characteristics may not be 
comparable.  This variability has an impact on how likely extreme values of 
structural responses are and, therefore, on the estimates of probability of 
occurrence of extreme events such as collapse.  

 
We investigate these issues by comparing the nonlinear response statistics of nonlinear 
single-degree-of-freedom (SDOF) oscillators of different structural periods and yield 
strengths to both real and simulated records.  In particular, we consider one real ground 
motion dataset, whose response statistics are used as a benchmark, and seven synthetic 
ground motion datasets.  A direct comparison of response statistics is legitimate because 
the seven simulated datasets were developed to match the same earthquake and site 
conditions of the real recordings. 
 
2.0 Description of the Synthetic and Real Ground Motion Datasets 
 
The simulated ground motion time histories that are used here were originally developed 
as part of the PEER K201 project entitled “Ground Motions for the Treasure Island 
National Geotechnical Experimental Site”.  The K201 project compares elastic response 
spectral values from simulated ground motions with those from real recordings of past 
earthquakes for the purpose of validating various ground motion simulation methods.  
The following seismologists developed the synthetic time histories used in the K201 
project and in this project: 
 

1. Igor A. Beresnev2;. 
2. Douglas Dreger3;  
3. Alexander A. Gusev4 et al.; 
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4. Lawrence Hutchings5 et al. (denoted as LLNL hereafter); 
5. Walter Silva6;  
6. Paul G. Somerville7 et al. (denoted as URS hereafter); 
7. Yuehua Zeng8. 

 
Note that both Dreger and Zeng, based on the preliminary results from this study, updated 
their dataset of synthetic motions with respect to those used in the K201 Project.  
 
The seven datasets contain simulated time histories that are intended to reproduce those 
generated by the M6.7 1994 Northridge earthquake at 20 near-field stations that ranged in 
distance from 5.2km to 19.1km (Table 1).  An eighth dataset contains the real recordings 
at the same 20 stations.  Here we used only the horizontal components, whereas the 
vertical components are neglected. Table 2 summarizes the details about the time 
histories provided by each seismologist.  In four (i.e., Dreger, Gusev, URS, and Zeng) out 
of seven cases, the simulated recordings consisted of both horizontal component time 
histories for each of the 20 stations.  Two horizontal components were also available in 
the LLNL dataset but only for 12 stations.  Beresnev and Silva did not provide separate 
horizontal components but rather a single “average” time history of horizontal ground 
motion at each one of the 20 stations.  Therefore, a total of 224 synthetic horizontal 
ground motion time histories were considered as input to the nonlinear dynamic analyses 
carried out in this study.   
 
As discussed above, the available suite of simulated input time histories is partially 
incomplete and somewhat heterogeneous.  Despite this drawback, we intended as much 
as possible to enable a legitimate comparison of nonlinear responses that encompasses all 
seven datasets. To achieve this goal, for five datasets (i.e., Dreger, Gusev, LLNL, URS, 
and Zeng) we computed the spectral responses for the two horizontal components at each 
station and combined them into an “average” spectral response.  For the remaining two 
datasets (i.e., Beresnev and Silva) we computed the responses to the “average” time 
history provided by the developers.  In the former case the average response was 
calculated using two different averaging methods, the geometric mean and the root-mean-
square (rms) value.  For nearly all subsequent comparative analyses, the rms value was 
used to describe the station-by-station structural response for each synthetic ground 
motion dataset that contained separate components.  This alternative was selected 
because it is consistent with the methodology used in the generation of the average 
ground motion time histories.  The geometric mean value was used only secondarily to 
assess whether the trends in the nonlinear responses observed for each modeler would be 
dependent on the particular component averaging method.  The comparison of the results 
obtained with the two averaging methods is reported in Section 4.2. 
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With reference to Table 1, the usable bandwidth of the real records exceeded 0.1 – 4.0 
seconds for all but three recording stations (KAT, LA0, PAR), since the highpass (HP) 
and lowpass (LP) corner frequencies of the causal Butterworth filter used to process such 
records were less than 0.2 Hz and greater than 12.5 Hz, respectively9.  The usable 
bandwidth of a record processed using a causal Butterworth 4-pole filter, such as that 
used for these records, is recommended to be between 1/1.25 times the LP frequency and 
1.25 times the HP frequency due to the significant reduction imposed by the filter in the 
neighborhood of the corner frequencies (Abrahamson and Silva, 1997, PEER 
documentation – http://peer.berkeley.edu/smcat/process.html).  Therefore, for records 
filtered with a high-pass frequency of 0.2 Hz, caution must be exercised when 
investigating the response of a structure with a period greater than 1/(0.2 Hz * 1.25) = 
4.0s.  The reader should also keep in mind that the recommendation on the usable 
bandwidth reported above (and below for the synthetic records) was provided with no 
specific attention to the use of such records as input to structural nonlinear dynamic 
analyses.  The effective structural period of vibration may significantly lengthen outside 
the suggested usable bandwidth of the record as the damage severity progresses.  In this 
study we have not made any attempt to revisit the adequacy of such recommendations in 
this light. This topic deserves further research that is beyond the scope of this study. 
 
For the synthetic records, we limited our analyses to the usable bandwidth specified by 
the developers to ensure that nonlinear response statistics were computed only within the 
intended range of applicability of the ground motion simulation model.  Table 2 lists the 
usable period range of each model, as well as a summary of the type and number of 
records provided in each dataset that were discussed earlier.  Note that all models are 
usable up to 4.0s with the exception of the LLNL model, which is limited to 2.0s.  For the 
interested readers, a brief description of the methodology used by each group of 
seismologists to generate the synthetic time-histories is given in Appendix A.  These 
descriptions were provided directly by the authors of each model. 
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Station Name Symbol
Distance

(km) HW/FW
HP 
(Hz) 

LP 
(Hz) 

Arleta ARL 8.66 NU 0.12 23 
Canoga Park, Topanga Canyon CNP 14.70 HW 0.05 30 
Jensen Filter Plant JEN 5.43 HW 0.08 unknown
Simi Valley - Katherine KAT 13.42 HW 0.5 30 
LA 00 LA0 19.07 NU 0.3 unknown
LA Dam LDM 5.92 HW 0.1 unknown
Newhall NWH 5.92 FW 0.12 23 
Pacoima Dam PAC 7.01 FW 0.16 23 
Pardee - SCE PAR 7.46 FW 0.5 20 
Pacoima Kagel Canyon PKC 7.26 NU 0.14 23 
Sun Valley - Roscoe RO3 10.05 NU 0.1 30 
Rinaldi Receiving Station RRS 6.50 HW unknown unknown
Sylmar Converter Stn. East SCE 5.19 HW unknown unknown
Sylmar Converter Stn.  SCS 5.35 HW unknown unknown
Sepulveda VA SPV 8.44 HW 0.1 unknown
Santa Susana SSU 16.74 HW 0.2 unknown
Northridge - Saticoy STC 12.09 HW 0.1 30 
Sylmar Hospital SYL 5.30 FW 0.12 23 
Tarzana - Cedar Hill TAR 15.60 NU 0.1 23 
Newhall - W. Pico Canyon WPI 5.48 NU 0.05 30 

 
Table 1: List of the twenty recording stations for the 1994 Northridge earthquake accelerograms, including 
the Butterworth filter corner frequencies for the recorded accelerograms.  Legend: HW = hanging wall, FW 
= foot wall, NU = neutral, HP = high-pass corner frequency, LP = low-pass corner frequency. 

 
 
 

Modeler Components # Records Usable Bandwidth 
Beresnev Average 20 0.1s – 4.0s 
Dreger Separate 40 0.1s – 4.0s 
Gusev Separate 40 0.1s – 4.0s 
LLNL Separate 24 0.1s – 2.0s 
Silva Average 20 0.1s – 4.0s 
URS Separate 40 0.1s – 4.0s 
Zeng Separate 40 0.1s – 4.0s 
Real Separate 40 0.1s – 4.0s 

Table 2: Summary of synthetic ground motion datasets. 



3.0 Description of the SDOF Structures 
 
The eight datasets of records described in the previous section were applied to 46 5%-
damped nonlinear Single-Degree-of-Freedom (SDOF) oscillators with natural periods 
ranging from 0.1 to 4.0s.  The backbone force-deformation curve was bilinear with 2% 
post-yield hardening and a hysteretic rule that had no degradation of either strength or 
stiffness.  The selected period range, which encompasses the fundamental periods of 
typical engineering structures, is, with the exception of the LLNL dataset, within the 
usable bandwidth of each ground motion model (see Table 2).  
 
To ensure a response that ranged from mildly inelastic to severely inelastic, we selected 
five “strength” levels for the SDOF system at each oscillator period.  In addition, we also 
included in this study the elastic response case both for completeness and for checking 
purposes.  The nominal strength levels of the SDOF oscillators were set as a fraction of 
peak elastic base shear, which follows the common seismic design practice of reducing 
the structural strength for a ductile structure by a force reduction factor, R.  The five 
selected strength levels are characterized by R values equal to two (mildly inelastic), 
four, six, eight, and ten (severely inelastic). Note that the level of nonlinear responses 
imply, for some SDOF systems, very large ductility values that, of course, may not be 
physically attainable by all real structures. 
 
The peak value of the elastic base shear, or equivalently the peak elastic deformation, 
experienced by an elastic structure is, however, a ground-motion-specific quantity.  
Therefore, one can achieve the same value of R either a) for each record in a dataset or b) 
on an average sense for all the records in the same dataset.   
 
In the former case the same target R value can be achieved by varying the yield 
displacement of the structure, dy, from record to record.  More precisely, for each record 
dy needs to be set equal to the peak elastic displacement for that record divided by the 
desired value of R (see Figure 1).  This case is hereinafter referred to as “constant-R” 
case.  In this set of analyses each record is effectively applied to SDOF systems with 
slightly different strength characteristics.   
 
In the latter case, the same R value can be obtained in multiple ways. In this study we 
kept constant the yield strength, dy, of the oscillator for all the records and we set its value 
equal to the median peak elastic response displacement across all the records in the real 
dataset divided by R.  This is, of course, equivalent to keeping the yield strength, Fy, 
constant.  In this way the same structure, with an “average” strength, that varies with any 
given period and R-value, is used to evaluate the nonlinear response to all the records.  
This case is hereinafter referred to as “constant-strength” (or constant-Fy) case. 
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Figure 1: Schematic of SDOF structure and yield strength definition.  The quantity α is the post-yield 
hardening here set equal to 2%. The yield strength in the figure is called Fy  in this study. 

 
 
In this study, we considered both constant-R and constant-strength analyses.  The 
constant-strength case was selected as the primary focus of our investigations because of 
its simpler physical interpretation.  For conciseness, we often neglected to remind the 
reader that the results were obtained using the constant-strength alternative.  The results 
found using the alternative constant-R approach are, however, clearly marked.  Nonlinear 
response spectra from both sets of analyses are briefly compared and contrasted in 
Section 4.4. 



4.0 Results 
 
The comparison of SDOF responses generated using different datasets is conveniently 
accomplished using the median (calculated as the geometric mean) and a standard 
deviation (of the natural logarithms of the data) of the 5%-damped elastic and inelastic 
spectra computed for the 20 stations (12 for the LLNL case).  The spectra for each station 
are calculated for the “average” horizontal component in the sense explained in Section 2.  
It is legitimate to use statistics across all the stations in this context because they are all 
within 20 kilometers from the fault rupture (Table 1), which is a fairly tight distance 
range.   
 
Figure 2 shows the median elastic pseudo-acceleration spectrum (panel a) and 
corresponding standard deviations (panel b) across stations in log-log scale for each 
synthetic dataset as well as for the real record one.  Figure 3 displays the same results 
plotted as the ratio of the same quantities, that is the median in the top panel and the 
standard deviation in the bottom panel, for each synthetic model to the corresponding 
ones for the real dataset.  A ratio above unity, if statistically significant, means 
overestimation of the response by a model and below unity means underestimation10.  
 
From inspecting the graphs in the top panels of Figures 2 and 3, it is clear that the median 
spectral amplitudes and shapes of the response spectra for some of the seven simulated 
cases is quite different than the median response spectrum from the real recordings.  This 
amplitude difference can be large, especially in the short period range (up to about 80% 
at 0.1s). It is also interesting to note that only the model developed by Gusev provides a 
median elastic spectrum that is within ±20% of the median spectrum from the real 
Northridge records across the entire frequency range.  The LLNL model also is within 
±20% of the target for almost all its range of applicability, which has an upper bound of 
2s.  All the other models tend to overestimate by different amounts the elastic response of 
SDOF systems with periods below 0.3s and, with the exception of the models by URS 
and Zeng, to underestimate it above 0.3s.  The URS and Zeng models seem to provide 
elastic responses even at periods larger than 0.3s that are, always in an average sense, 
either equally or more severe than those of the real records.  Finally, any trend across 
period in the median ratios shown in Figure 3 that departs from a horizontal line suggests 
that the elastic spectra generated by the synthetic model have, on average, a different 
shape than those produce by nature, at least in this Northridge earthquake test case. 
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Figure 2: Median (top panel) and standard deviation (bottom panel) of the 5%-damped elastic pseudo-
acceleration response spectra for the “average” horizontal component computed for all the available 
stations (12 for the LLNL model and 20 in the other seven cases). Note: 981 cm/s/s is equal to one g. 
 
 



Note that the dispersion in the record-to-record ratio of inelastic spectra (not shown here) 
decreases with increasing period.  The values of the COV vary with the model and they 
range between 0.3 at 4s to more than 1.0 at 0.1s.  Hence, given these COV values and a 
sample size of 20 records per model (12 for the LLNL one), we can state that the elastic 
spectral ratios in Figure 3a are different than one with 90% confidence either in the long 
period range, or in the short period range, or in both for all seven models but Gusev’s. 
More precisely, the period ranges where the ratios significantly differ from one are 
approximately above 0.6s for Beresnev, above 0.3s and below 0.15s for Dreger, above 
1.5s for LLNL, between 0.8s and 1.1s and below 0.15s for Silva, above 3s and below 
0.15s for URS, and above 1.5s for Zeng.   
 
The inspection of the bottom panel of Figures 2 and 3 shows that none of the synthetic 
models provide a dispersion measure of the linear responses that is within ±20% of those 
from the real ones across the entire frequency range. The standard deviation across 
frequency from all the models, with the exception of the LLNL one for periods below 
0.8s, is within ±40% with only minor departures from it.  The LLNL model, on the other 
hand, seems in this case to provide records that produce significantly more variable 
elastic responses in the short period range than those from nature.  Recall, however, that 
the statistics for the LLNL model are based on 12 records only and not 20 like in the 
other cases. 
 
We presented here a short summary of the elastic results, which were more thoroughly 
investigated in the PEER K201 Treasure Island project, only to set the stage for the post-
elastic nonlinear results that are the core of this study.  The differences in the elastic 
response between the simulated and real records have an influence on the nonlinear 
response statistics at all strength levels.  This is apparent from Figure 4, which presents 
the ratio of the medians and standard deviations of the inelastic displacement response 
spectra for the R=2 case.  Note that for all the figures that relate to nonlinear post-elastic 
responses we measure the response in terms of spectral displacement rather than pseudo-
spectral acceleration as we did in the linear elastic case. The spectral ratios displayed in 
Figure 3, of course, are not affected by which one of these two variables is used for the 
spectra.  The signature of the elastic results in Figure 3 is obvious in the post-elastic 
ratios displayed in Figure 4.  The trend of the ratios for R=1 and R=2 for each modeler 
are very similar.  A similar statement, although less strong due to the increase in the 
record-to-record response variability for larger values of R, can be made for the more 
severely nonlinear cases.   
 
A convenient way of investigating the effects of each modeling technique above and 
beyond the elastic regime is to normalize the nonlinear displacement response spectra 
generated for a given value of R (greater than one) by the corresponding elastic spectra 
obtained using the same dataset of synthetic records.  We will refer to this ratio of 
inelastic-to-elastic spectra as C, that is: 
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Figure 3: Ratio of the medians (top panel) and standard deviations (bottom panel) of the 5%-damped linear 
elastic displacement response spectra of each synthetic model to the corresponding quantity computed for 
the real record dataset. 

 



Of course, C is a function of the oscillator period, T. In addition, given that we are 
comparing the results from synthetic datasets with the target ones from the real 
recordings, it is useful to divide the quantity C by the inelastic-to-elastic spectra ratio 
obtained for the real records, Creal. The quantity C (or Creal in the case of real records) is 
the response measure for which median values and standard deviations across the twenty 
recording stations (or twelve in the LLNL case) are computed. Also, for conciseness of 
notation, the ratio of C/ Creal is sometime called qc in the sections that follow. Namely: 
 

,
real

C C
Cq =          (2) 

 
The value of C is, on average, greater than one only for short periods (the shorter the 
period, the larger the average value of C), whereas it tends to one for moderate to longer 
periods (e.g., greater or equal to 1.0s).  This is essentially the well-known equal 
displacement rule that was introduced by Veletsos and Newmark (1960) some forty years 
ago.  The quantity C can be interpreted as a correction to the linear maximum elastic 
displacement to obtain the maximum nonlinear displacement of an SDOF oscillator.   
 
In the following sections we will present the differences (as ratios) in C between 
synthetic and real ground motions.  We will also briefly discuss the influence of the 
component averaging method and the impact of the yield strength definition on the 
observed results.  Finally, we will report some results that were obtained by replacing the 
spectral displacement as the nonlinear structural response measure with energy-based 
quantities, such as the input energy and the absorbed energy. 



 

 
 
Figure 4: Ratio of the medians (top panel) and standard deviations (bottom panel) of the 5%-damped 
nonlinear response spectra (R=2) of each synthetic model to the corresponding quantity computed for the 
real record dataset. 
 
 



4.1  Nonlinear Structural Response to Simulated and Real Ground Motions 
 
The median value11, Ĉ, of the inelastic-to-elastic spectral ratio C for each of the seven 
synthetic datasets divided by the median value, Ĉreal, of C for the real records is plotted 
across the period range of 0.1s to 4.0s in panel (a) of Figures 5 to 7.  The bottom panel 
shows the ratio of the standard deviation of C divided by the standard deviation of Creal.  
Attention is focused on the C/Creal results for strength levels R = 2, 4 and 10.  The results 
for strength levels R = 6 and 8 are similar to those for R=10 and, therefore, they are not 
shown here.  
 
4.1.2 Median responses 
 
A deviation above unity of any of the Ĉ/Ĉreal curves in the top panel of Figures 5 to 7 
indicates that, median elastic response for a simulated and the real record datasets being 
equal, the synthetic records in that dataset tend to produce, on average, systematically 
larger nonlinear spectral displacements than those by real records.  Conversely, 
deviations below unity indicate that the simulated records tend to be, on average, more 
benign in producing nonlinear responses than those in nature.  It is emphasized here that 
the equality of the linear responses generated by simulated and real records is postulated 
here only as a tool to compare the effectiveness of synthetic and real records in creating 
nonlinear responses. From Figure 3a, however, it is clear that this equality is often not 
statistically achieved for some of the seven simulated datasets at some period ranges. In 
the rest of this section we will assume that this equality of linear responses holds. 
 
From the top panel of Figures 5 to 7 it is apparent that the difference in the ratio of 
median nonlinear to elastic response between the synthetic datasets and the real records is 
more period-dependent for some ground motion models than for others.  For example, the 
Ĉ/Ĉreal results for R=2 in Figure 5a show that all the models provide nonlinear responses 
that are within ±20% from those of the real ones for all periods larger than about 0.3s. 
For periods shorter than 0.3s the records generated by the models by Beresnev, Dreger, 
LLNL, and, at some periods, Silva tend to be significantly less aggressive than real 
records. Conversely, the model by Zeng seems to create records that are, on average, 
more damaging.  As before, the model by Gusev, being always within ±10% of the target, 
appears to be the more accurate one overall.  For R=4 and R=10 in Figures 6 and 7, the 
models by Gusev, URS, and Zeng produce nonlinear responses that are statistically 
closest to those created by real records. The other four models provide similarly accurate 
results only for long periods, while in the region of shorter periods they seem to generate 
significantly less severe responses than their real counterparts.  These systematically 
benign responses are more prominent at shorter periods for a given R, and in general at 
all periods for larger R values.  A summary of the peak and average values of Ĉ/Ĉreal 
across the period range is given in Table 3, along with the structural periods at which the 
peak values occur.   
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Figure 5: Statistics of the inelastic-to-elastic spectral ratio, C, for the seven synthetic datasets, normalized 
by the corresponding quantity, Creal, obtained from the suite of real records, for a level of inelasticity 
defined by R=2.  The top panel presents the ratio of the medians while the bottom panel displays the ratio 
of the standard deviations. 



 

 
 

Figure 6: Statistics of the inelastic-to-elastic spectral ratio, C, for the seven synthetic datasets, normalized 
by the corresponding quantity, Creal, obtained from the suite of real records, for a level of inelasticity 
defined by R=4.  The top panel presents the ratio of the medians while the bottom panel displays the ratio 
of the standard deviations. 



 

 
 

Figure 7: Statistics of the inelastic-to-elastic spectral ratio, C, for the seven synthetic datasets, normalized 
by the corresponding quantity, Creal, obtained from the suite of real records, for a level of inelasticity 
defined by R=10.  The top panel presents the ratio of the medians while the bottom panel displays the ratio 
of the standard deviations. 
 



 R = 2 R = 4 R = 10 
Model Min Tmin Max Tmax Avg Min Tmin Max Tmax Avg Min Tmin Max Tmax Avg 

Beresnev 0.58 0.11 1.15 2.32 0.90 0.38 0.11 1.16 4.00 0.77 0.40 0.11 1.41 4.00 0.78 
Dreger 0.53 0.10 1.06 1.44 0.88 0.30 0.11 1.07 1.44 0.78 0.32 0.11 1.28 0.90 0.86 
Gusev 0.88 0.46 1.07 0.35 0.97 0.78 0.26 1.13 1.44 0.93 0.81 1.92 1.17 0.38 0.98 
LLNL 0.60 0.10 1.07 1.31 0.88 0.39 0.11 1.00 2.00 0.70 0.45 0.21 1.02 2.00 0.62 
Silva 0.74 0.12 1.14 2.32 0.95 0.42 0.12 1.07 0.90 0.82 0.42 0.12 1.12 0.90 0.81 
URS 0.87 0.67 1.15 0.19 1.00 0.69 0.12 1.17 2.55 0.95 0.69 0.12 1.32 2.55 1.04 
Zeng 0.90 0.46 1.41 0.10 1.04 0.81 0.24 1.20 1.44 0.99 0.81 0.12 1.26 1.19 1.02 

Table 3: Peak and average values of Ĉ/Ĉreal for strength levels R = 2, 4 and 10.  The table shows also the 
structural periods at which each peak value of Ĉ/Ĉreal occurred. 

 
To determine the statistical significance of the observed qc=Ĉ/Ĉreal, the 2-sided 90% t-
student confidence limits for qc were calculated across the period range at each strength 
level for each ground motion model.  At oscillator periods where the upper and lower 
confidence limits do not bracket the line Ĉ/Ĉreal = 1, the median nonlinear spectral 
displacement for the synthetic dataset is statistically biased at a 10% level of significance.  
Figures 8 to 14 show the confidence limits for each ground motion model at the three key 
structural strength levels.  As anticipated, only the model by Gusev seems to be unbiased 
across the whole spectrum of periods regardless of the level of nonlinearity. In general, 
with the exception of the two by Beresnev and Dreger, all the models are unbiased for 
R=2 across the entire period range.  All the models but Gusev’s are biased at some 
periods for R=4 and R=10.  The amount of bias is larger for larger R values and for 
shorter periods. In these cases most of the synthetic models create records that are more 
benign than real ones. The model by URS, on the other hand, is the only one that creates 
records that produce statistically more severe inelastic responses at the R=10 level than 
those in nature for SDOF oscillators of 0.8s and longer natural period. 
 
The average deficiency of the nonlinear responses generated by some of these synthetic 
ground motions at short periods (e.g., below 0.3s) is likely due to a systematic difference 
in that period range in the average shape of the linear response spectra generated by 
synthetic and by real records. Figure 2a shows, in fact, that some of the models, such as 
Beresnev and Dreger, on average, produce linear pseudo-acceleration spectra that are 
either flat or falling instead of climbing with increasing periods below 0.3s like the 
spectrum from real records does.  The difference in spectral shape is more evident in 
Figure 3a, which shows the ratio of the elastic spectra for the synthetic models and the 
real ones.  Given this discrepancy, it is not surprising that when the effective period of the 
oscillator lengthens because of the nonlinear behavior of the oscillator these records 
become less aggressive than real ones.  
 



 
Figure 8: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for the 
Beresnev model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  

 

 
Figure 9: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for the 
Dreger model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 



 
Figure 10: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the Gusev model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 

 

 
Figure 11: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the LLNL model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 



 
Figure 12: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the Silva model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 

 
Figure 13: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the URS model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 



 
Figure 14: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the Zeng model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 

 
4.1.2 Record-to-record nonlinear response variability  
 
The bottom panel of Figures 5 to 7 shows the relative dispersion of nonlinear (still 
normalized by elastic) responses to synthetic records and to real records.  As before, a 
line above unity means relatively more record-to-record variability produced by synthetic 
records whereas the opposite is true for a line below unity.  The relative variability of 
nonlinear responses to synthetic and real records is, again, model-dependent and varies 
with the level of response severity.  For R=2 most of the models, especially those from 
Beresnev, Dreger, and LLNL, seem to underestimate the record-to-record variability of 
the response from real records, in particular at shorter periods.  For the more severe 
responses (R=4 and R=10) the general tendency of most of the models is to 
underestimate the response variability for periods ranging between 0.3s and 0.8s and to 
overestimate it between 0.8s and about 3s.  A summary of statistics of σc/(σc)real  across 
the period range is given in Table 4.  
 
 
 
 



 
 R = 2 R = 4 R = 10 

Model Min Tmin Max Tmax Avg Min Tmin Max Tmax Avg Min Tmin Max Tmax Avg 
Beresnev 0.38 3.09 1.09 0.50 0.76 0.54 0.67 1.76 2.00 0.90 0.49 0.38 3.71 4.00 1.04 
Dreger 0.31 0.81 1.05 0.30 0.75 0.45 0.67 1.31 2.00 0.85 0.40 0.42 1.32 1.31 0.87 
Gusev 0.67 0.74 1.33 1.44 1.00 0.75 0.67 1.55 1.44 0.98 0.64 2.11 1.68 1.31 0.94 
LLNL 0.07 1.92 1.04 1.19 0.69 0.28 0.67 1.37 0.11 0.77 0.31 0.67 1.30 0.10 0.69 
Silva 0.69 2.32 1.50 1.74 1.02 0.80 0.38 1.67 1.31 1.15 0.69 2.11 1.78 1.31 1.14 
URS 0.59 4.00 1.58 2.81 1.04 0.69 0.67 1.95 2.00 1.08 0.57 0.67 1.46 4.00 0.93 
Zeng 0.61 0.16 1.59 0.74 1.01 0.73 0.67 2.01 2.00 1.15 0.72 0.56 1.81 1.31 1.13 

Table 4: Peak and average values of σc/(σc)real , which is the ratio of the standard deviation of C for 
simulated records to the standard deviation of Creal.  The values are reported for strength levels R = 2, 4 and 
10.  Included are also the SDOF periods at which each peak value of σc/(σc)real occurred. 

 
If synthetic records tend to generate less variable nonlinear responses than real ones, then 
simple statistical considerations show that an analyst would be better off using them 
rather than real ones to estimate the median nonlinear response of a structure12 for a given 
earthquake scenario.  From a practical standpoint, the same accuracy would be achieved 
with fewer runs with simulated rather than real records as input. However, if an engineer 
seeks to design a new structure or assess the safety of an existing one against collapse, for 
example, the use of simulated records that tend to generate less variable responses would 
underestimate the likelihood of extreme response values and, therefore, the chances of 
collapse.  This shortcoming should be taken into consideration. 
 

                                                 
12 This statement assumes that the synthetic ground motions generate statistically unbiased responses. If 
that is untrue, like in a few cases among those considered here, the bias needs to be corrected when using 
such records.  



 

4.2 Influence of Response Component Averaging Method 
 
To determine if using the geometric mean of the response to both horizontal components 
at each station rather than the root-mean-square, as done so far, would result in different 
trends in the results, we investigated the following ratio: 
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C
q ˆ

ˆ
=        (3) 

 
where ĈRMS and Ĉgeometric are the median values of the inelastic-to-elastic spectral ratio C 
across the available stations computed using the two different averaging schemes.  The 
averaging method is pertinent to only five of the seven simulation models: Dreger, 
Gusev, LLNL, URS, and Zeng. Beresnev and Silva provided only one “average” ground 
motion component per station and, therefore, the results for their models will not be 
affected by the averaging technique.   
 
Using simple mathematics, it can be shown that the ratio of rms to geometric average of 
nonlinear responses divided by their elastic counterparts is almost always greater than 
one and that it tends to one for long periods.  This trend is confirmed in Figure 15, which 
shows qavg computed for a constant-strength level R = 4 for the real records and for each 
of the five synthetic datasets mentioned above.  Therefore, the effect of using the 
geometric mean rather than the rms mean is expected to have a noticeable effect only in 
the short period range. 
 
Replacing the rms mean with the geometric mean when computing the inelastic-to-elastic 
median spectral ratios makes these ratios slightly closer to unity in the short period range 
than the ratios shown in top panels of Figures 5 to 7.  The effect of using the geometric 
instead of the rms mean decreases with increasing R value such that this difference 
almost disappears for R=10.  Figure 16, which is analogous to top panel of Figure 5, 
shows the case where the effect of the averaging technique is largest13. Note that at 
periods above approximately 0.5s the component averaging technique has no effect on 
the assessment of the median response at all the structural strengths considered here. 
 
 

                                                 
13  Beresnev and Silva provided only one component per station. The curves for the Beresnev and Silva 
models in Figures 4 and 15 are different because the different averaging technique affects the computation 
of the normalizing factor that uses two components of the real records. 



 
Figure 15: Ratio qavg based on constant-strength analysis (R = 4).  See Eq. (3) for the definition of qavg.  
Note that only those datasets that contained component pairs of records at each recording station are shown.   

 
Figure 16: Ratio of the medians of the inelastic-to-elastic spectral ratio, C, for the seven synthetic datasets 
normalized by the corresponding quantity, Creal, obtained from the suite of real records. Both C and Creal 
were computed for a level of inelasticity defined by R=2 using the geometric mean of the responses to the 
two horizontal components, when available.  The difference between averaging techniques decreases with 
increasing period and increasing R. This figure should be inspected in conjunction with the top panel of 
Figure 5. 



4.3 Influence of Yield Strength Definition 
 
All the results shown so far were computed for SDOF systems with constant strength (or 
constant yield force, Fy) for all the records.  Therefore, as mentioned earlier, the value of 
R referred to above applies only in an average sense for all the records and not 
necessarily for each single record.  Alternatively, we could keep a constant-R for all the 
records by appropriately modifying Fy for each one. The choice of preferring a constant-
strength to a constant-R approach is, of course, entirely subjective.  Other analysts could 
prefer the use of the constant-R approach instead.  To assess whether the results that were 
shown so far still hold for the constant-R case, we investigated the statistical differences 
in the two following quantities, qc and q’c: 
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The graphs of qc for R=2, 4, and 10 were shown in the top panels of Figures 5 to 7.  The 
computed values of the ratio q’c/qc are shown in Figure 17a, 17b, and 17c for R = 2, 4 and 
10, respectively.  This ratio, which is clearly both model-dependent and R-dependent, can 
be significantly different than unity.  This translates into potentially different systematic 
differences between nonlinear responses generated by the real dataset and the synthetic 
ones if the constant-R definition rather than the constant-strength definition is adopted.   

 
Figure 17a: Trend of the q’c/qc  curves computed for R=2 for the seven simulation models.  Note that q’c 
refers to the constant-R results while qc refers to the constant-strength results that have been discussed 
throughout the report.  See Eq. (4) for the definitions of qc and q’c. 
 



 
Figure 17b: Trend of the q’c/qc  curves computed for R=4 for the seven simulation models.  Note that q’c 
refers to the constant-R results while qc refers to the constant-strength results that have been discussed 
throughout the report.  See Eq. (4) for the definitions of qc and q’c. 
 

 
Figure 17c: Trend of the q’c/qc  curves computed for R=10 for the seven simulation models.  Note that q’c 
refers to the constant-R results while qc refers to the constant-strength results that have been discussed 
throughout the report.  See Eq. (4) for the definitions of qc and q’c. 

 



To quantify the extent of such differences, if any, we repeated all the nonlinear response 
analyses using the constant-R definition for all the datasets, both real and synthetics.  The 
effect on the confidence limits for q’c of using this alternative R definition is shown in 
Figures 18 to 24.  These graphs should be compared with those in Figures 8 to 14. From 
inspecting this second batch of plots one can conclude that none of the conclusions that 
applied to the constant-strength approach are significantly affected by the adoption of the 
constant-R approach to the yield strength definition.  The major differences affect the 
model by LLNL, that becomes unbiased for R=2 and 4 across the entire period range, and 
both the models by Silva and Zeng, whose amounts of bias are slightly worsened.  
 
 
 
 

 
Figure 18: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Beresnev model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 8). 



 
Figure 19: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Dreger model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 9). 

 
Figure 20: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Gusev model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 10).   



 
Figure 21: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the LLNL model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 11). 

 
Figure 22: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Silva model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 12).  



 
Figure 23: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the URS model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 13).  

 
Figure 24: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Zeng model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 14).  



4.4 Effects on Nonlinear Responses Measured by Energy-Based Parameters 
 
An alternative to quantifying the nonlinear dynamic response of a structure by a peak 
measure such as spectral displacement involves the use of a cumulative energy-based 
measure, such as input energy (Ei) or absorbed energy (Ea).  Some researchers prefer the 
use of cumulative rather than peak response measures because they are supposed to 
capture the effects of both strength and stiffness degradation and the ground motion 
duration.  These energy parameters are determined by integrating the equation of motion 
with respect to the relative structural displacement (u).  The energy balance form of the 
equation of motion is given by: 
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where ut is the total structural displacement, fs is the structural restoring force, ug is the 
ground displacement, m is the system mass and c is the system damping.  The first term 
in (5) is the absolute kinetic energy (Ek) at time t, the second term is the damping energy 
(Ed), the third term is the absorbed energy (Ea), and the right-hand side of (5) is the 
absolute input energy (Ei).  An alternative form of (5) may also derived in terms of the 
relative kinetic and input energy, which can differ significantly from their absolute 
counterparts for extremely long and short period structures (Uang and Bertero, 1988). In 
the period range considered here the difference between absolute and relative quantities is 
negligible. 
 
Before plunging into performing additional nonlinear dynamic analyses, we investigated 
the correlation between the response quantity used so far, namely the spectral 
displacement, Sd, and Ei or Ea to determine if an energy-based parameter is likely to 
provide additional insight into nonlinear response bias associated with the ground motion 
simulation techniques.  In this correlation study, we considered the equivalent velocity 
form of the two energy parameters.  The input energy-equivalent velocity (Vi) and 
absorbed energy-equivalent velocity (Va) were chosen because they are commonly used 
energy measures for which attenuation models have been developed (Lawson, 1996; 
Chou and Uang, 2000).  The equations for the energy-equivalent velocities are given by: 
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where m is the mass of the SDOF structure.  Note that in the case of elastic analysis, the 
absorbed energy-equivalent velocity (Va) converges to the pseudo-velocity of the SDOF 
system. 
 
 



 
(a) T = 0.1s 

 
(b) T = 1s 

 
(c ) T = 4s 

Figure 25: Correlation between spectral displacement and both absolute input energy-equivalent velocity 
(Vi) (figures on the left) and absorbed energy-equivalent velocity (Va) (figures on the right) for the twenty 
real records and constant-strength R = 10 at T = 0.1s, 1s, and 4s.  

 
The three figures on the left-hand side of Figure 25 show the relationship between 
spectral displacement and absolute Vi for the twenty real records and constant-strength R 
equal to 10 at a structural periods of 0.1s (Panel a), 1s (Panel b), and 4s (Panel c).  



Similar relationships between Sd and the absorbed energy-equivalent velocity, Va, are 
displayed on the right-hand side of the same figure. The lowest constant-strength 
corresponding to R=10 was chosen to ensure that each of the twenty records produced 
significant nonlinear response to avoid mixing elastic and inelastic behavior in the 
computed absorbed energy results.  It is apparent from Figure 25 that a strong linear 
relationship (i.e., correlation coefficients range from 0.84 to 0.92) exists between spectral 
displacement and each energy-equivalent velocity parameter. Hence, an investigation of 
nonlinear response bias associated with synthetic ground motion time histories using an 
energy-based parameter would most likely not bring any additional insights. One can 
conclude that the systematic differences between energy-based nonlinear responses 
computed by synthetic and real records are similar to those shown in the Figures 5 to 14. 
 
 
5.0 Inelastic Response Spectra for NGA14 Database and Related Software 
 
Developers of synthetic ground motions may have the need to test on their own whether 
the nonlinear responses of SDOF oscillators subject to simulated ground motions are in 
agreement with those produced by real records for the same earthquake scenario.  To help 
this effort we are going to compute the nonlinear displacement response spectra for 
R=2,4,6,8, and 10 for all the records in the soon-to-be-developed NGA database.  The 
horizontal components of this database are rotated into the two directions normal and 
parallel to the fault strike.  The spectra will be computed for 5%-damped nonlinear 
Single-Degree-of-Freedom (SDOF) oscillators with natural periods ranging from 0.1 to 
4.0s, a bilinear backbone force-deformation curve with 5% post-yield hardening15, and a 
hysteretic rule that has no degradation of either strength or stiffness. The nonlinear 
displacement response spectra will be provided in the same format as that used in the 
NGA project to store the elastic pseudo-acceleration response spectra for the same 
records. Also, we will provide a MATLAB subroutine to assist in the computation of 
nonlinear response spectra for additional records not included in this database.  
 
Both the nonlinear spectra and the MATLAB subroutine with instructions for its use will 
be provided to PEER immediately after the NGA database is made available to us. 
 
6.0 Conclusions 
 
This study has investigated whether ground motion simulation techniques produce 
nonlinear displacement response spectra that are statistically distinguishable from those 
created by real records.  The spectra were computed for nonlinear SDOF systems with 
bilinear backbone curves and no degrading stiffness or strength, a hardening ratio of 2%, 
and periods ranging from 0.1s to 4.0s.  The level of response nonlinearity was defined by 
different levels of the force reduction factor, R, ranging from two (mild nonlinearity) to 

                                                 
14 Next Generation Attenuation (NGA) Relationships Project funded by the PEER Lifelines Program. 
15  Note that in this study we have used SDOF systems with only 2% of post-yield hardening. The nonlinear 
displacement response spectra, however, will be provided for 5% hardening ratio rather than 2%. This 
choice is made to be consistent with a currently ongoing research project at Stanford University that is set 
to develop an attenuation relationship for Sd for SDOF systems with 5% hardening.  



ten (severe nonlinearity).  The investigation was done by means of a case study that used 
real accelerograms of the Northridge earthquake recorded at 20 stations located within 
20km of the fault rupture.  The nonlinear responses of the real records were considered as 
the target for the responses produced by the synthetic records that were provided by 
seven groups of seismologists.  The comparisons were performed using the “average” of 
the responses generated by the two horizontal components at each station. 
 
The agreement between elastic responses from records generated by these seven models 
and those from the real recordings for this case study has been thoroughly considered in 
another PEER-funded Project K201. We limit ourselves to saying here that six out of 
seven models were found to produce elastic spectra that have systematic deviations of 
different severity from the elastic spectra of real records, mostly (but not only) at short 
periods.  The synthetic records seem to be more aggressive than those in nature in this 
period range. The deviations are statistically significant at the 10% level.  
 
The core of this study, however, deals with the issue of whether any systematic 
deviations can be detected in the post-elastic nonlinear regime under the assumption that 
the elastic responses of real and synthetic records are in statistical agreement.  To 
separate the elastic from the post-elastic nonlinear results, we considered the ratio of 
nonlinear to linear responses as the quantity to investigate for possible statistical 
discrepancies in the results generated by the synthetic models compared to those from 
real records.  We found, again, that six out of seven models produced statistically biased 
nonlinear response spectra at least at some periods.  Again, the systematic deviation, 
which is significant with 90% confidence, is more prominent at lower periods and at 
larger R values.  Unlike the elastic case, however, the synthetic records tend to be more 
benign than real ones in producing nonlinear responses in stiff structures especially in the 
severe nonlinear range.  One model, however, produces records that at long periods 
generate nonlinear responses for R=10 that are more severe than those from real records.  
The reason for the deficiency in the nonlinear responses to synthetic records at short 
periods lies in the difference that, on average, exists between the linear response spectra 
of these synthetic records and those of real ones in that period range.  When the response 
of an SDOF system becomes severely nonlinear, its effective vibration period lengthens 
significantly and, therefore, it becomes dependent on the frequency content of the record 
in a fairly large bandwidth and not only in the neighborhood of the initial elastic natural 
period of vibration.   
 
Besides the possible bias in the assessment of nonlinear structural responses introduced 
by the use of simulated records, we also compared the variability of nonlinear responses 
generated by simulated and real records.  Most of these models appear to underestimate 
the record-to-record response variability from real records at shorter periods and, for high 
level of nonlinearity (e.g., R≥4) only, to overestimate it at longer periods.  A more limited 
variability may become useful in practice when one wants to assess the median response 
of structures because, once any bias is corrected, the same accuracy can be achieved with 
fewer runs involving synthetic rather than real records.  However, nonlinear response 
variability for simulated records lower or higher than that for real records can affect the 
safety assessment of structures against collapse, for example.  Collapse probability 



estimates are controlled by extreme response values, and if they are less likely to occur 
for synthetic than for real records, such as it seems for some of the models in the short 
period range, then the “true” collapse probability would be underestimated and the safety 
assessment possibly misguided.   
 
These conclusions about systematic differences in nonlinear responses from synthetic and 
real records were tested by evaluating their sensitivity to a) a two different schemes of  
averaging the ground motion horizontal components, b) to an alternative definition of R, 
and c) to the use of a cumulative energy-based ground motion parameter rather than peak 
displacement.  We detected some differences but the conclusions were found to be 
sufficiently robust to all three of these tests.  
 
We must emphasize, however, that all the conclusions drawn here were based on one 
case study involving only 20 stations and one earthquake. They may not apply to other 
cases and/or other simulation techniques. More research should be done to test the 
validity of these conclusions with additional test cases.  
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Appendix A: Simulation Methodologies 
 
Modeler 1: Dr. Igor Beresnev 
 

Simulation of records for the Northridge earthquake was performed using the stochastic 
finite-fault ground-motion modeling technique.  In the method, the fault plane is discretized into 
rectangular elements (subfaults), each of which is treated as a point source and assigned an 
average ω-2 spectrum with a stochastic component superimposed on it, in the same manner as for 
the stochastic point sources introduced by Boore (1983).  The total number of subfaults is 
prescribed by the seismic moment of the target event.  The rupture starts at the hypocenter and 
propagates radially outward with a prescribed constant velocity, triggering subsources as it 
reaches them.  Subsource trigger times are randomized.  The generated subfault acceleration time 
history is propagated to the observation point using empirical (distance-dependent) duration, 
geometric-attenuation, and anelastic-attenuation (Q) models, which are user-defined and thus can 
be adjusted to any specific region.  The contributions from all subsources are summed up in the 
time domain at the observation point, with proper delays accounting for the propagation-distance 
differences.  Site effects can be introduced by specifying a site amplification function and an 
Anderson-Hough low-pass filtering parameter “kappa”.   

 
The subfault size in the method is chosen from the empirical model established from the 

method calibration on 26 large earthquakes,  
 

log ∆l = -2 + 0.4 M, 4 ≤ M ≤ 8,  
 
where log is base 10, ∆l is the subfault linear dimension in km, and M is the moment magnitude 
of the target event (Beresnev and Atkinson, 2002, equation 1).  The only free parameter of the 
simulations is the maximum-slip velocity on the fault, which reflects parametric variability in 
ground-motion predictions for future events.   
 

The method is implemented in the FORTRAN code FINSIM (Beresnev and Atkinson, 
1998a).  The details of the technique and the results of its multiple calibrations are fully described 
in a series of publications by the authors (Beresnev and Atkinson, 1997, 1998a,b, 1999, 2002).   
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Modeler 2: Dr. Douglas Dreger 
 

The spatial and temporal description of fault slip from Wald et al. (1996) was used for 
Northridge record simulation. The Wald model is a multiple time window parameterization 
following the method of Hartzell and Heaton (1983), and the code for this model (Dreger and 
Kaverina, 2000; Kaverina et al., 2002) is the same. In the Wald model there are six time 
windows. Three describe how slip is released with time following the passage of a constant 
velocity rupture front, and for each time window there are two possible slip directions (55-degree 
and 145-degree (90 degrees apart)). The actual slip direction is the linear sum of these two 
components. The rise time and rupture velocity used by Wald to best fit the data were used in this 
model. The original set of ground motions assumed a triangular rise time function, and in the 
second set an omega-squared model was used. The second set is considered to be better since the 
records do not suffer from spectral nulls that the triangular function suffers from. I also assumed 
The 1D rock velocity model Wald specified was assumed in this model. Given the source 
parametric information and Green's functions from the 1D model the time histories were 
simulated by direct point-source summation where contributions from each of the subfaults for 
each time window and slip direction were delayed according to the rupture trigger time and 
summed. Non-rock sites were adjusted by multiplying by a factor representing the site 
amplification. Factors of 1.4 and 1.78 were used for NEHRP C and D sites, respectively. The 
factors were determined based on vertical SH wave amplifiction from the 1 km/s rock velocity to 
the corresponding NEHRP site velocities. The Wald et al. (1996) model is band limited due to 
their bandpass filtering of the data between 0.1 to 1 Hz. 
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Modeler 3: Dr. Alexander Gusev et al., Institute of Volcanic Geology and Geochemistry 
 

The earthquake ground motion simulation technique in the model was developed by 
A.Gusev and V.Pavlov. It permits the simulation of realistic earthquake ground motions at a site 
and the ability to study the variability of such a motion. Eventually, a suite of design ground 
motions for scenario earthquake(s) may be generated. The technique combines a multiple-point-
source version of a stochastic earthquake fault model and a suite of Green’s functions calculated 
for layered weakly anelastic medium. The source model consists of a grid of point subsources 
with appropriate random time histories. A large number of properties/parameters of the simulated 
earthquake fault can be adjusted in order to: (1) tune the model to a particular seismological 
situation; and/or (2) to analyze the variability and uncertainties of strong motion prediction; or 
also (3) to generate a suite of motions that represents these uncertainties. These parameters 
consist of two large groups: (1) physical parameters that are fixed in a particular run of the 
simulator (their variation produces “parametric variability”) and (2)  “random” parameters that 
are essentially random seeds; they produce “model variability”.  

 
The source simulation module is based on the generalization of the classic Haskell (1966) 

stochastic fault model. Its important modifications are: (1) variable final slip governed by the 
power spectrum that is a power-law with respect to wave number; (2) circular rupture front with 
an arbitrary nucleation point and variable rupture velocity, random with a prescribed mean; (3) 
local slip velocity, or the moment rate of a subsource, is random, with a common duration or rise 
time. The grid of subsources covers the rupture. Individual subsources have no geophysical 
meaning, its number is arbitrary, and can be large if the site in question is located at a small 
distance from a large-magnitude fault. Instead of Haskell’s omega-cube far field spectrum, the 
far-field spectrum of a simulated source is adjusted, in its high-frequency part, to a particular, 
preset, average (regional) spectral scaling law.  

 
To calculate the pulse response of the layered elastic medium from double-couple source for 
distances less than 50 km, a version of the method of Alekseev and Mikhailenko (1976) is used, 
developed by Pavlov (2002) who advanced the "auxiliary functions" approach first introduced by 
Fatyanov and Mikhailenko (1988). The main advantage of this method is the lack of numerical 
instability inherent within propagator methods, because in the auxiliary function method all 
relevant exponential factors are below unity by absolute value. To ensure preset uniform 
numerical accuracy, the number of terms in the series expansion is selected adaptively. The 
developed numerical method provides accurate broad-band representation of ground motions in a 
layered medium, from static terms to high frequencies. 
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Modeler 4: Dr. Lawrence Hutchings et al., LLNL 
 

We numerically compute the discretized representation relation in a form that utilizes 
analytical slip functions and empirical or synthetic Green's functions.  We derive rupture models 
that are consistent with physical understanding of how earthquakes rupture. An important claim 
in this approach is that we use physical and measurable parameters, so that they can be identified 
and bounded in a prediction. Discretization is small enough (for elemental areas) and short 
enough (for time steps) to model continuous rupture to the highest frequency of interest.  
Empirical Green's functions are obtained from recordings of small earthquakes with effectively a 
step-source time functions, and are adjusted for source location and focal mechanism solution to 
model the Green's function from each elemental area.   We often use synthetic Green's functions 
for low frequencies, but we did not do that for this exercise.  Rupture parameters include rupture 
geometry, hypocenter, rupture roughness, rupture velocity, healing velocity, Kostrov slip 
function, asperity size and location, and slip vector.  Slip follows the Kostrov slip function for the 
time required for the rupture front to reach the fault edge from the hypocenter and for a healing 
phase to reach an element from the fault edge.   We used a rupture velocity of 2.9 km/sec and a 
healing velocity of 2.3 km/s. Asperities are modeled as areas with high slip amplitudes and high 
stress drop. Fault displacement for asperities grade from the value of background rupture at the 
edge to greatest at the center. Stress drop is a dependent variable derived from the Kostrov slip 
function; for this exercise it has a value of 180 bars for the non-asperity portion of rupture, and 
between 300 and 600 bars for asperities.  Stress drop also diminishes near the surface at the rate 
of the lithostatic load. Rupture roughness is modeled by a percentage of elemental areas having 
rise time randomly shortened to between 0.1 and 0.9 times the original value.  Roughness is 
implemented by delaying an element's rupture time so that it finishes slip at the same time as 
neighboring elements. Elements with rough rupture have higher stress drop.  In our model of the 
Northridge earthquake 20% of the elements had rough rupture. Our model of the Northridge 
earthquake was previously published (Hutchings, 1994) and utilized previously published reports 
of fault geometry, hypocenter, slip vector, and slip distribution.  We did not iterate around rupture 
parameters to find the best fit to observed seismograms for this exercise. 
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Modeler 5: Dr. Walter Silva 
 
STOCHASTIC FINITE-SOURCE MODEL GROUND MOTION MODEL 
 
In the near-source region of large earthquakes, aspects of a finite-source including rupture 
propagation, directivity source-receiver geometry, and saturation of high-frequency (≥ 1 Hz) 
motions with increasing magnitude can be significant and may be incorporated into strong ground 
motion predictions.  To accommodate these effects, a methodology that combines the aspects of 
finite-earthquake-source modeling techniques (Hartzell, 1978; Irikura 1983) with the stochastic 
point-source ground motion model has been developed to produce response spectra as well as 
time histories appropriate for engineering design (Silva et al., 1990; Silva and Stark, 1993; 
Schneider et al., 1993).  The approach is very similar to the empirical Green function 
methodology introduced by Hartzell (1978) and Irikura (1983).  In this case however, the 
stochastic point-source is substituted for the empirical Green function and peak amplitudes; PGA, 
PGV, and response spectra (when time histories are not produced) are estimated using random 
process theory.   
 
Use of the stochastic point-source as a Green function is motivated by its demonstrated success in 
modeling ground motions in general and strong ground motions in particular (Boore, 1983, 1986; 
Silva and Stark, 1993; Schneider et al., 1993; Silva and Darragh, 1995) and the desire to have a 
model that is truly site- and region-specific.  The model can accommodate a region specific Q(f), 
Green function sources of arbitrary moment or stress drop, and site specific kappa values and soil 
profiles.  The necessity for having available regional and site specific recordings distributed over 
the rupture surface of a future earthquake or modifying possibly inappropriate empirical Green 
functions is eliminated. 
 
For the finite-source characterization, a rectangular fault is discretized into NS subfaults of 
moment MS

0.  The empirical relationship  
 

log (A) = M - 4.0,    A in km2          (A1) 
 
is used to assign areas to both the target earthquake (if its rupture surface is not fixed) as well as 
to the subfaults.  This relation results from regressing log area on M using the data of Wells and 
Coppersmith (1994).  In the regression, the coefficient on M is set to unity which implies a 
constant static stress drop of about 30 bars.  This is consistent with the general observation of a 
constant static stress drop for earthquakes based on aftershock locations (Wells and Coppersmith 
1994).  The static stress drop, defined by Equation A4, is related to the average slip over the 
rupture surface as well as rupture area.  It is theoretically identical to the stress drop which 
defines the omega-square source corner frequency assuming the rupture surface is a circular crack 
model (Brune, 1970; 1971).  The stress drop determined by the source corner frequency (or 
source duration) is usually estimated through the Fourier amplitude spectral density while the 
static stress drop uses the moment magnitude and an estimate of the rupture area.  The two 
estimates for the same earthquake seldom yield the same values with the static generally being 
the smaller.  In a recent study (Silva et al., 1997), the average stress drop based on Fourier 
amplitude spectra determined from an empirical attenuation relation (Abrahamson and Silva, 
1997) is about 70 bars while the average static stress drop for the crustal earthquakes studied by 
Wells and Coppersmith (1994) is about 30 bars.  These results reflect a general factor of about 2 
on average between the two values.  These large differences may simply be the result of using an 
inappropriate estimate of rupture area as the zone of actual slip is difficult to determine 
unambiguously.  In general however, even for individual earthquakes, the two stress drops scale 



similarly with high static stress drops (> 30 bars) resulting in large high frequency (> 1 Hz for M  
5) ground motions which translates to high corner frequencies. 
 
The subevent magnitude MS is generally taken in the range of 5.0-6.5 depending upon the size of 
the target event.  MS 5.0 is used for crustal earthquakes with M in the range of 5.5 to 8.0 and MS 
6.4 is used for large subduction earthquakes with M > 7.5.  The value of NS is determined as the 
ratio of the target event area to the subfault area.  To constrain the proper moment, the total 
number of events summed (N) is given by the ratio of the target event moment to the subevent 
moment.  The subevent and target event rise times (duration of slip at a point) are determined by 
the equation  
 
 

log τ = 0.33 log M0 - 8.54           (A2) 
 
 
which results from a fit to the rise times used in the finite-fault modeling exercises, (Silva et al., 
1997).  Slip on each subfault is assumed to continue for a time τ.  The ratio of target-to-subevent 
rise times is given by 
 

( )SMM5.010 −=
τ
τ

       (A3) 

 
and determines the number of subevents to sum in each subfault.  This approach is generally 
referred to as the constant-rise-time model and results in variable slip velocity for nonuniform slip 
distributions.  Alternatively, one can assume a constant slip velocity (as do Beresnev and 
Atkinson, 2002) resulting in a variable-rise-time model for heterogenous slip distributions.  This 
approach was implemented and validations resulted in an overall “best” average slip velocity of 
about 70 cm/sec, with no significant improvement over a magnitude dependent rise time 
(Equation A3).  The feature is retained as an option in the simulation code. 
 
Recent modeling of the Landers (Wald and Heaton, 1994), Kobe (Wald, 1996) and Northridge 
(Hartzell et al. 1996) earthquakes suggests that a mixture of both constant rise time and constant 
slip velocity may be present.  Longer rise times seem to be associated with areas of larger slip 
with the ratio of slip-to-rise time (slip velocity) being depth dependent.  Lower slip velocities 
(longer rise times) are associated with shallow slip resulting in relatively less short period seismic 
radiation.  This result may explain the general observation that shallow slip is largely aseismic.  
The significant contributions to strong ground motions appear to originate at depths exceeding 
about 4 km (Campbell, 1993; Boore et al., 1994) as the fictitious depth term in empirical 
attenuation relation (Abrahamson and Silva, 1997; Boore et al., 1997).  Finite-fault models 
generally predict unrealistically large strong ground motions for large shallow (near surface) slip 
using rise times or slip velocities associated with deeper (> 4 km) zones of slip.  This is an 
important and unresolved issue in finite-fault modeling and the general approach is constrain the 
slip to relatively small values or rise time to large values in the top 2 to 4 km.  For the composite 
source model, the approach is to taper the subevent stress drop to zero from a depth of 5 km to the 
ground surface (Yehua Zeng, personal communication 1999).  This approach is also followed in 
the stochastic finite source model.  For earthquakes with significant shallow slip, greater than 
20% moment released in the top 5 km, expected short period (< 1 - 2 second) motions are 
significantly lower (20 – 50%) than those of deep slip events, of the same magnitude (Silva et al., 
1997).  To capture this effect, shallow slip earthquakes are modeled with a 5 bar, rather than 30 
bar subevent stress drop, over the entire rupture surface, based on the validation exercises (Silva 



et al., 1997).  These results imply significantly different source processes affecting short periods 
between earthquakes which do not interact with low stresses associated with shallow rupture and 
those earthquakes which have deep rupture only.  The implications to seismic hazard are obvious. 

 
To introduce heterogeneity of the earthquake source process into the stochastic finite-fault model, 
the location of the sub-events within each subfault (Hartzell, 1978) are randomized as well as the 
subevent rise time (σln = 0.8).  The stress drop of the stochastic point-source Green function is 
taken as 30 bars, consistent with the static value based on the M 5.0 subevent area using the 
equation  
 

∆σ =  7
16

 ( M
R

)e

e
3

                               (Brune, 1970, 1971)             (A4) 

 
where Re is the equivalent circular radius of the rectangular sub-event. 
 
Different values of slip are assigned to each subfault as relative weights so that asperities or non-
uniform slip can be incorporated into the methodology.  For validation exercises, slip models are 
taken from the literature and are based on inversions of strong motion as well as regional or 
teleseismic recordings.  To produce slip distributions for future earthquakes, random slip models 
are generated based on a statistical asperity model with parameters calibrated to the published slip 
distributions.  This approach has been validated by comparing the modeling uncertainty and bias 
estimates for the Loma Prieta and Whittier Narrows earthquakes using motion at each site 
averaged over several (30) random slip models to the bias and uncertainty estimates using the 
published slip model.  The results show nearly identical bias and uncertainty estimates suggesting 
that averaging the motions over random slip models produces as accurate a prediction at a site as 
a single motion computed using the "true" slip model which is determined from inverting actual 
recordings. 
 
The rupture velocity is taken as depth independent at a value of 0.8 times the shear-wave velocity, 
generally at the depth of the dominant slip.  This value is based on a number of studies of source 
rupture processes which also suggest that rupture velocity is non-uniform.  To capture the effects 
of non-uniform rupture velocity, a random component is added through the randomized location 
of the subevents within each subfault.  The radiation pattern is computed for each subfault, a 
random component added, and the RMS applied to the motions computed at the site when 
modeling an average horizontal component.  To model individual horizontal components, the 
radiation pattern for each subfault is used to scale each subfault’s contribution to the final 
summed motion. 
 
The ground-motion time history at the receiver is computed by summing the contributions from 
each subfault associated with the closest Green function, transforming to the frequency domain, 
and convolving with the appropriate Green function spectrum.  The locations of the Green 
functions are generally taken at center of each subfault for small subfaults or at a maximum 
separation of about 5 to 10 km for large subfaults.  As a final step, the individual contributions 
associated with each Green function are summed in the frequency domain, multiplied by the 
RMS radiation pattern, and the resultant power spectrum at the site is computed.  The appropriate 
duration used in the RVT computations for PGA, PGV, and oscillator response is computed by 
transforming the summed Fourier spectrum into the time domain and computing the 5 to 75% 
Arias intensity (Ou and Herrmann, 1990). 
 



As with the point-source model, crustal response effects are accommodated through the 
amplification factor (A(f)) or by using vertically propagating shear waves through a vertically 
heterogenous crustal structure.  Soil nonlinearity is accommodated through the equivalent-linear 
approximation.  Propagation path damping, through the Q(f) model, is incorporated from each 
fault element to the site.  Near-surface crustal damping is incorporated through the kappa operator 
(Equation A1).  To model crustal propagation path effects, the raytracing method of Ou and 
Herrmann (1990) is applied from each subfault to the site. 
 
Time histories may be computed in the process as well by simply adding a phase spectrum 
appropriate to the subevent earthquake.  The phase spectrum can be extracted from a recording 
made at close distance to an earthquake of a size comparable to that of the subevent (generally M 
5.0 to 6.5).  Interestingly, the phase spectrum need not be from a recording in the region of 
interest (Silva et al., 1989).  A recording in WNA (Western North America) can effectively be 
used to simulate motions appropriate to ENA (Eastern North America).  Transforming the Fourier 
spectrum computed at the site into the time domain results in a computed time history which then 
includes all of the aspects of rupture propagation and source finiteness, as well as region specific 
propagation path and site effects. 
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Modeler 6: Dr. Paul Somerville et al., URS Corporation 
 

The primary reference for the simulation procedure and its application to the 1994 Northridge 
earthquake is Somerville et al. (1996), pages S-116 through S-118.  The application of the simulation 
procedure to the generation of ground motion time histories and response spectra at the sites of steel 
buildings in the FEMA/SAC Steel Project is described in Somerville et al. (1995). 

 
The simulation procedure is based on rigorous seismological representations of the earthquake 

source and wave propagation.  To simulate broadband time histories, a hybrid method is used which 
computes the ground motions separately in the short period and long period ranges and then combines 
them into a single time history (e.g. Somerville et al., 1996).  The earthquake source is represented as a 
shear dislocation.  The ground motion time history is calculated in the time domain using the 
elastodynamic representation theorem.  In order to represent near-fault effects, ground motion simulations 
need to be based on the summation of complete Green’s functions that contain near-, intermediate-, and 
far-field terms.  This is done using the elastodynamic representation theorem, which states that the ground 
motion U(t) can be calculated from the convolution of the slip time function D(t) on the fault with the 
Green's function G(t) for the appropriate distance and depth, integrated over the fault rupture surface (Aki 
and Richards, 1980): 

 
U(t) = ∑ D(t) * G(t) 

At long periods, theoretical source models including the theoretical radiation pattern are used, 
while at short periods, empirical source functions derived from the recordings of small earthquakes are 
used that incorporate the radiation pattern empirically.  For both procedures, the fault rupture plane is 
discretized into a number of equal size sub-fault regions.  Fault asperities are represented by spatial 
variations in the amount of slip or slip velocity.  The Green's functions are generated using frequency-
wavenumber integration for long-periods and generalized rays for short periods. 
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Modeler 7: Dr. Yuehua Zeng 
 

Based on fundamental earthquake source physics and seismic wave propagation, we have 
developed and improved a numerical simulation procedure to compute synthetic strong motion 
seismogram using a composite source model (Zeng et al., 1994).  The method has been successful 
in generating realistic strong motion seismograms.  The realism is demonstrated by comparing 
synthetic strong motions with observations from the recent California earthquakes at Landers, 
Loma Prieta (Su et al., 1994a,b) and Northridge (Zeng and Anderson, 1996; Anderson and Yu, 
1996; Su et al., 1998), earthquakes in the eastern US (Ni et al., 1999) and earthquakes in 
Guerrero, Mexico (Zeng et al., 1994; Johnson, 1999), Turkey (Anderson et al., 2001) and India 
(Khattri et al, 1994; Zeng et al, 1995).  We have also successfully applied the method for 
earthquake engineering applications to compute the ground motion of scenario earthquakes.  
During the process of continuing development, we have included scattering waves from small 
scale heterogeneity structure of the earth, site specific ground motion prediction using weak 
motion site amplification, and nonlinear soil response using the geotechnical engineering model.  
We have evaluated the numerical procedure for simulating near-fault long-period ground motions 
and rupture directivity, revisiting some of the above earthquake events, including Loma Prieta, 
Landers and Northridge.  We also tested its ability to predict the near-fault ground motion 
observation from the 1979 Imperial Valley, California earthquake and the 1995 Kobe event (Zeng 
and Anderson, 2000). 

 
The composite source model assumes a large earthquake is a superposition of smaller 

subevents that all break during the earthquake rupture processes.  The number and radius of the 
subevents follow the Guttenberg and Richter frequency-magnitude relation given in form of a 
power law distribution of radii,  prrN −~)( , where p is the fractal dimension. The source is 
kinematic, but this source description has the capability to generate realistic accelerograms with 
the proper frequency content (Zeng et al., 1994), and has a capability to predict ground motions 
(e.g. Anderson and Yu, 1996; Anderson et al., 2002).  Also, it is possible, using a genetic 
algorithm, to find specific composite sources that are consistent with both the statistics and the 
phase of observed records (e.g. Zeng and Anderson, 1996).  Several physical parameters of 
earthquake source (radiated energy, stress drops) can be expressed in terms of the composite 
source model parameters (Anderson, 1997).  The high frequency radiation of the model is 
controlled by the subevent stress drops, maximum subevent radius and rupture velocity. 
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